

5 häufige Fehler beim Erstellen von Information Views

Amsterdam – Juni 2019

Fragebogen

- Ich benutze immer Inner Joins
- Projektionen sind überflüssig
- SQL oder Column-Engine? Mir doch egal....
- Star Joins sind viel zu langsam
- Ich verwende regelmäßig Aggregatknoten
- Ich nehme immer alle Spalten in meine View
- Left Outer oder Inner Join? Das macht doch HANA....

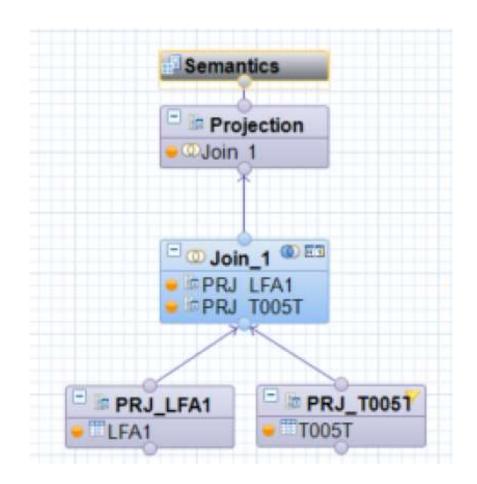
5 häufige Fehler beim Erstellen von Information Views

Was sind die 5 häufigsten Fehler?

- 1. "Falsche" Calculation View für die Aufgabe
- 2. "Falsche" SQL-Engine verwenden
- Häufige Verwendung von "heavy nodes"
- 4. Filter und Left-Outer-Joins an der "falschen" Stelle
- 5. Ignorieren zusätzlicher Persistenz

1.) Verwenden der "falschen"CalculationView

- Fehler bei Modellierung von Dimensional Calcuation Views (DCV)
- Fehler beim Design von Star Joins (SCV)
- Fehler beim Design von klassischen Calculation Views (TCV)
- Daumenregel:
 - DCV -> SCV -> TCV



Fehler bei Modellierung der Dimensional Calculation View (DCV)

- DCV dienen zum Modellieren von Stammdaten
 - Wiederverwendung!
- Best practices:
 - Kein Überladen der Dimension
 - Minimieren der Anzahl der Tabellen in der View
 - Kleinere Dimensionen haben bessere Laufzeiten!
 - Nur notwendige Spalten (Trade-Off bzgl. Wiederverwendbarkeit und Performance)
 - Keine geschachtelten DCVs

Beispiel für gutes Design mit Dimensional Calculation Views

Fehler beim Modellieren von Star Joins

- Star Join Calculation Views (SCV) verbinden ein oder mehrere DCVs mit der Faktentabelle
- SCV ist der vorletzte Knoten im Modell
 - Kommt unmittelbar vor Semantics Knoten
- Best practices
 - · Tabellengrößen der zu joinenden Tabellen beachten
 - · Kleinere Tabellen eignen sich besser
 - Nur benötigte Spalten
 - · Einsatz von Filtern und Input-Parametern auf den Projektionsknoten
 - Reduktion der Datenmenge und des Joins
 - Nach Möglichkeit Left-Outer-Joins benutzen
 - Inner Joins so früh wie möglich
 - Unterhalb des Star Joins
 - Spalten, die sowohl im Star join als auch in der Dimension vorkommen, sollten im Ergebnis nur aus der Dimension kommen

Beispiel gutes Design Star Join

- Einsatz von Projektion (DCV)
- Inner Join kommt zuerst
- Star Join mit notwendigen Feldern

2.) Verwendung der "falschen" Engine

- SQL Engine -> Standard SQL
- Column Engine -> SQLScript
- · Frühzeitig überlegen, welche Engine in der View verwendet wird
- Wahl abhängig von
 - Persönlichen Präferenzen und Know-How
 - Column Engine bietet größere Funktionsbibliothek
 - Geo-spatiale Funktionen nur in Column Engine
 - Ansonsten ist SQL Engine schneller
- Switch zwischen Column und SQL Engine im Modell vermeiden
 - Switch zwischen Engines kann sehr zeitintensv sein

3.) Häufige Verwendung von "heavy nodes"

- "Heavy Nodes" sind Knoten, die z.Bsp. die Aggregatfunktionoder Rankingfunktion nutzen
- Brauchen sehr viel Rechenzeit
- Filter können nicht an "heavy nodes" weitergereicht werden
- Best Practice
 - Aggregation so früh wie möglich
 - Datenmenge möglichst klein halten
 - · Möglichst wenige Joins, um Datenmenge klein zu halten

4.) Filter und Left-Outer-Joins an der falschen Stelle

- Filter können an jeder Attributspalte außer im Semantik-Knoten und im Knoten vor dem Semantik-Knoten angelegt werden
- Input Parameter erlauben es, den Filter auf den Tabellen auszuführen
- Immer wenn möglich Left-Outer-Joins verwenden
 - Datenbank-Pruning

5.) Ignorieren zusätzlicher Persistenz

- Manchmal ist die Modellierung als CV zu komplex
- Zusätzliche Persistenz?
 - Nichts ist schneller als direktes Lesen aus einer HANA-Tabelle/View
 - · Zusätzliche ETL kann deutliche Performancegewinne bringen
 - Für Real-Time-Analyse kann SAP HANA SDI genutzt werden
 - Einsatz von zusätzlicher ETL birgt Fehlerquelle
 - Einsatz von ETL bringt zusätzliche Kosten
 - · Abwägung der Kosten gegenüber Nutzen

Zusätzliche Quellen

- 2Blog post consolidating HANA modeling best practices
 - https://blogs.sap.com/2016/11/04/hana-modelling-consolidatedbest-practices-for-better-performance/